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An overview of various modeling methods used to understand small angle neutron scattering
(SANS) data from homogeneous polymer systems is presented. First, calculations of single macro-
molecule structure factors are reviewed for many chain architectures and monomer block configura-
tions such as linear, ring, star branched, comb grafted chains and regular “starburst” dendrimers
either in the homopolymer or copolymer forms. Then, the different methods used to model
“concentration” effects in polymer solutions (dilute, semidilute, concentrated), polymer melts and
blend mixtures are summarized on the basis of the random phase approximation. Polymer chain
stiffness is also included in the formalism so that mixtures of liquid crystals and flexible polymers in
the single-phase region can be described. Specific examples are included along with various SANS
data that were analyzed within this framework. This overview is meant to be a guide to help build up
models in order to understand SANS data from many homogeneous polymer systems. It is not
meant to be complete and is not an exhaustive review of the literature in the field. Most of the results
discussed have been previously published and are brought together here in a unified self-contained
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1 Introduction

Since its introduction in the early 1970s, the small angle neutron scattering
(SANS) method has had a substantial impact on polymer research. When used
with partially deuterated polymers, SANS permits a close monitoring of macro-
molecular conformations in polymer solutions, melts, and blend mixtures. This
advantage has made it a unique tool for the understanding of the morphology of
polymer materials and of the relationship between their structures and physical
properties.

Macromolecular systems can be modeled fairly well owing to the pioneering
work of many scientists such as P. Debye (flexible chains, etc.), P. Flory
(gaussian chains, theta temperature, etc.), H. Kuhn (polymer chain stiffness,
etc.), W. Stockmayer (gelation, branching, etc.), B. Zimm (dilute solutions,
normal modes, etc.), P.G. de Gennes (random phase approximation, scaling
ideas, etc.), H. Yamakawa (wormlike chains, etc.), H. Benoit (star polymers.
multicomponent description, etc.), A.Z. Akcasu (high concentration method,
first cumulant, etc.), K.F. Freed (renormalization group theory) to name only
a few. The SANS technique has shown with no ambiguity, for instance, that
polymer coils form random walk trajectories when they are in the melt or bulk
states [1]. This means that correlations between monomers along the chain
backbone are screened by other surrounding chains, so that the chain “forgets”
quickly (after one step) about where its other parts are [2]. SANS has been most
valuable for the monitoring of chain conformations in a wide variety of polymer
systems (solutions, melts, solids) and with a wide array of experimental condi-
tions. It has also proven its usefulness, during the last few years, as a thermodyn-
amic probe used to map out phase diagrams of polymer blend mixtures.

Blending of polymers is necessary for better controlled physical properties of
polymeric materials. Unfortunately, most polymer blends are immiscible. The
binary mixtures that are known to be miscible have been very valued systems for
studying the thermodynamics of phase separation. Conformations in the
miscible region, concentration fluctuations close to the immiscible region as well
as the delimitation of the spinodal line have been well understood for a number
of polymer blend systems using the SANS technique with deuterium labeling of
one of the components. Our description of homopolymer and/or copolymer
blends stops at the spinodal line in the sense that heterogeneous multiphase
systems fall outside of the scope of this overview which is devoted to homo-
geneous single-phase mixtures only.

Advances in the modeling of polymer systems, such as the random phase
approximation (RPA) [3, 4], thoroughly reviewed here, have made it possible to
analyze SANS data from widely different and seemingly complicated mixtures of
various polymer architectures at various concentrations and temperatures. Old
modeling methods, such as the inverse Zimm formula [5] (which is the basis of
the Zimm Plot), or more recent modeling methods such as the high concentra-
tion method [6-8], fall within the scope of the present overview and are
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discussed in detail since they constitute major tools for the understanding of
SANS data from polymer solutions. Some misgivings as to the validity of using
such “mean field” approaches to describe polymer solutions (where concentra-
tion fluctuations are important) have been presented in the literature [4, 9, 10].
A generalization of de Gennes’ RPA formula [3, 4] based on a direct com-
putations method {11, 12] or on a multicomponent matrix approach [13-15]
are also reviewed and reproduced in an appendix in order to clarify what
assumptions are made for its derivation. Another calculation [16] applied the
RPA to ternary polymer blends. A further generalization of the multicomponent
RPA method to include polymer chain stiffness is included. These recent results
will be useful for the qualitative treatment of mixtures of liquid crystals and
flexible polymers in the single-phase region. They can predict the isotropic-
to-nematic phase transition as well as the spinodal line.

On the other hand, advances in chemical synthesis have made possible the
polymerization of many complicated chain architectures. Linear, ring, star
branched and comb grafted chains can be made now with high regularity,
monodispersity and controlled sequencing of different chemical blocks. For
instance, stars can be synthesized with a fraction (say one third) of one arm
deuterated, copolymer combs can be made with chemically different monomeric
units for the side branches and the backbone, etc. “Dendrimers” [17]
(“starburst” or “combburst”) are regular polymers that grow through multifunc-
tional polymerization reactions starting from an initiator core and branching
outward with a multiplication of the number of monomeric blocks from one
generation to the next. Structure factors for “starburst” dendrimers are pres-
ented here as a guide to “build up” such quantities for other chain architectures.
Polymer networks have been the subject of a number of SANS investigations
[18]; however, as yet, their structure factor has not been successfully calculated
making them inappropriate to include in this overview.

The paper is divided into the two main essential parts needed to work out
a model for a generic polymer system: first, the single-chain structure factor, and
then the inter-chain correlations contribution (also called “concentration” ef-
fects). Gaussian coil and random walk statistics are assumed for most of the
paper, although, when possible, chain rigidity and chain swelling (or collapse)
are included in order to show how these could be taken into account. A simple
model, referred to as the “sliding rod” model [19], is used, for instance, to
describe polymer chain stiffness between the gaussian coil limit and the rigid rod
limit. Many other semiflexible chain models exist [20] but are not included here
because of our focus on the simplest models and concepts possible. Mono-
disperse polymers are assumed throughout the paper. After discussing the two
main pieces needed to work out a model (single-chain and inter-chain contribu-
tions), some specific examples are discussed and results taken from my recent
research topics are included. Subject matters are covered at a basic tractable
level.
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2 Form Factors, Structure Factors

2.1 Definitions

In order to introduce some notation and definitions, we consider a polymer
block with n monomers of segment length b. Defining r;; as the interdistance
between two monomers i and j in that block, and Q as the scattering wave-
number (often called scattering “vector”), various types of correlations can be
considered depending on the number of summations involved:

E(Q) = (exp[ —iQ 11, 1) (2.1)
Q) =(1/n) Z Cexp[—iQ-r;]) 2.2)
P(Q) = (1/n%) Z Cexp[—iQ ry]). (2.3)

i,j=1
E(Q), F(Q) and P(Q) are the correlations between chain extremities, the form
factor and the structure factor respectively and ¢ - -+ > represents an average
over all possible chain conformations. Note that these expressions are nor-
malized such that they become unity at the zero Q limit.
The radius of gyration is defined as:

R? = (1/2n%)

s

<rd) (2.4)

1

ij
and the low Q expansion of the structure factor is:
P(Q)=1-(QR,)*/3 (2.5

regardless of what model is used to describe chain statistics. However, the full
chain correlations at finite Q can be calculated only after a chain model is
specified. A few simple cases are considered here: flexible gaussian chains, rigid
rods, “sliding rods” for semiflexible chains and freely-jointed chains.

2.2 Ideal Gaussian Polymer Blocks

Gaussian coils are characterized by a gaussian probability distribution [2] for
the monomers and describe adequately flexible polymer blocks. Ideal chains
follow random walk statistics, i.e.,

(rfy =b?i—j (2.6)

(b being the segment length) as is the case for polymer melts, relaxed polymer
solids and polymer solutions under theta conditions (when monomer-monomer
and monomer—solvent interactions are equivalent). The polymer chain quickly
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“forgets” (after one step) about where its other segments are and the radius of
gyration is R, = b (n/6)/2,
In this case, a natural scattering variable is introduced as o = Q?b2/6 so
that:
Eg(an) = exp[ — a(n — 1)] (2.7)

n

Fglom) = (1/n) 3 exp[— a(i — 1]

i=1

=[1 —exp(—an)]/[1 —exp(—a)]n (2.8)

Pg(on) = (1/n%) 3 exp[ —ali —jl] (2.9)

= 1/n+2{1 — [I —exp( — an)]/[n(l — exp(— )1}/
[n(l —exp(—a))].

Note that for « < 1 and n > 1, but keeping an finite, more familiar form and
structure factors are recovered:

Fg(an) = [1 — exp(— an)]/an (2.10)
Pg(an) = 2[exp{— an) — 1 + an]/(an)?. (2.11)

This form for Pg(xn) is the widely used Debye function. Note that for
homopolymer chains, n is large (large degree of polymerization) and o is small
(SANS instruments do not “see” monomer chemistry) so that these last expres-
sions can be used. However, for short block copolymers, n is not necessarily
large and the more general equations are more appropriate to use.

2.3 Swollen/Collapsed Gaussian Polymer Blocks

Within Flory’s mean field approximation, biased random walk statistics are
characterized by:

iy =b2ji—jP* (2.12)

where v is the excluded volume parameter that takes on values between v = 1/3
for collapsed chains, to v = 3/5 for fully swollen chains, via v = 1/2 for ideal coils
(note that fully swollen chains become ideal coils in 4 dimensional space). The
radius of gyration is in this case: R, = b[n*Y/(2v + 1)(2v + 2)]"/%. The various
correlation factors become:

Eg(on) = exp[ — a(n — 1)*V] (2.13)

Fg(on) = (l/n).zn: exp[— ai — 1)*V] (2.14)

i=1

Pa(an) = (I/n?) ¥ exp[—ali —jI>] 215)

ij=1
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Due to the fact that these progressions cannot be summed, the continuous chain
limit (x € 1 and n » 1, but keeping an finite) is taken so that the following
results can be obtained:

Fg(on) = [1/2vX"2]y(1/2v,X) (2.16)
Pg(an) = [1/vXV 2] {y(1/2v, X) — (/X" ]y(1/v, X)} (2.17)

where X = an?" has been defined and v(a, X) is the incomplete gamma function:
X

y(a, X) = | dtexp(— t)t*~ 1. (2.18)
0

Note that y(a, o0) = I'(a)is the gamma function. This structure factor (Pg(on))
reproduces the Debye function in the limit v = 1/2. The high Q limit (o > 1) of
the structure factor is:

Pg(om) = [I/VXY2T{T(1/2v) — [1/XV2]T(1/v)] (2.19)

which varies from 3T7(3/2)/(«*?n) for fully collapsed chains to 2/(an) for ideal
chains to 5I'(5/6)/3(«*/®n) for fully swollen chains. Flory introduced a charac-
teristic transition temperature (called theta temperature and defined for infinite
molecular weights) for which the monomer-monomer, solvent-solvent and
monomer-solvent interactions are equivalent making the chain appear “ideal”
{as if it were in a bulk environment). Below this temperature, chains start
collapsing while above it, they start swelling.

2.4 The Temperature Blob Model

In cases of intermediate degrees of chain swelling, the temperature blob
approach [21] has been useful in modeling excluded volume effects. It consists in
defining a blob comprising a number n, of monomers that obey ideal chain
statistics while the blobs themselves show excluded volume effects:

fy> =b%li—jl; li—jl<n

<ri2j>:nrb2(|i_'j|/nr)2v; Ii_jl>nr~
This approach involves two parameters (v and n,) to describe chain swelling and
is characterized by an unphysical break of chain statistics at |i — j| = n,. Due to
the awkwardness of the numerical generation of the structure factor when

v % 1/2, a simple Debye function with swollen radius of gyration is often used (in
an adhoc fashion) to fit scattering data from polymer solutions.

(2.20)

2.5 Rigid Rods

For rigid rods, the natural scattering variable is o = Qb, and the conformational
averaging becomes an averaging over orientations. Here also, in order to obtain
compact analytical results, one has to go to the continuous chain limit (o < 1
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and n > 1, but keeping an finite) which gives:
Eg(on) = sin(an)/on 2.21)

Fg(an) = (1/n))_ sin(od)/od = Si(an)/on 2.22)

Pe(am) = (1/n%) Y. sin[ali — j|1/[xli — j[]

= 2{[cos(an) — 1]/an + Si(an)}/on (2.23)

where the sine integral function has been defined as:

AN

Si(an) = | dtsin(t)/t. (2.24)
J .

Note that in cases where the large n assumption is not valid, precise form
and structure factors should be generated by performing the summations
numerically.

Various models are available [20] to describe semifiexible chains. Some are
based on expansions either close to the gaussian coil or to the rigid rod limits,
while others interpolate between these two chain stiffness limits. One of these,
the sliding rod model [19], is described here because of its inherent simplicity.

2.6 The Sliding Rod Model

The sliding rod model assumes that the chain behaves as a-rigid rod for contour
lengths corresponding to a characteristic number n, of monomers (bn, is used as
a stiffness parameter reminiscent of the Kuhn length) whereas longer chain
portions follow ideal chain gaussian statistics (flexible coils). The structure factor
is given by:

Ne

Pgp (o0, a,n) = (l/nz){ Z_ sin[ay i — jl1/o i —jl]

+ ) exp(—ozzti—m} (2.25)

i—j=nc+1

where a; = Qb and o, = Q2b?/6. Defining structure factors for a rigid rod
Pr(o,n) and a gaussian coil Pg(x,n) (see above), one obtains:

Pgr (o1, aon) = (l/nz){nf Pg (o 1)

+(n—n, — 1)?Pg(a,n — ayn, — o)} . (2.26)

2.7 Freely-Jointed Chains

Freely jointed chains are another form of flexible chains because of the free
rotation of the universal joint between monomers; however, monomers are
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assumed to be rigid “sticks” of size b. In this case, the structure factor can be
calculated:

Pryc(on) = {[1 + jo(@)In/[1 —jo(o)] — 2jo (@)1 — ji()]/
[l — jo(x)]*}/n? (2.27)

where o = Qb and jo{a) = sin(a)/a is the spherical Bessel function of order zero.
Now that self correlations within the same block (or chain) have been
calculated, we will introduce cross correlations between different blocks.

2.8 Inter-Block Cross Correlations

Consider two polymer blocks A and C with ns and nc monomers of segment
lengths b, and b in each, separated by a third block B with ng monomers of
segment length by. Correlations between the A and C blocks are [22]:

n, nc

P(aany, acne) = (1/nanc) Z Z <eXp[“Q'l'ij]>

= F(aany)E(agng) Facnc) (2.28)

where completely free joints (random bond angles) have been assumed between
blocks A/B and B/C and angular correlations have been neglected. E(an) and
F (an) could be for rigid rods or gaussian coils depending on the stiffness of the
A, B, and C blocks.

Now that the needed tools for calculating intra-block and interblock cor-
relations have been developed, we will consider various polymer architectures in
the next sections.

3 Structure Factors for Various Chain Architectures

3.1 Linear Chain

Consider a linear chain with N monomers of segment length b. The static
scattering function is defined as: S(Q) = N2P(aN). For convenience in notation,
it can also be written as:

S(Q)= N + N2Q[«, N] 3.1
where:
N
Q[o, N] = (2/N?) Z E(ak) (3.2)

represents the non-self (i % j) correlations. Here, & = Q?b?/6 if the chain is
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flexible or oo = Qb if it is a rigid rod. Note that;
Q[ N]=P(a, N) — /N ' (3.3)

and that Q[0, N] = (N — 1)/N. Efforts are being made to keep N finite (for the
sake of describing short blocks) to the extent possible.

3.2 Ring Homolymer

Since modeling rigid rings is trivial. We assume gaussian statistics (ideal chains).
Consider a ring polymer of N monomers of segment length b. The static
scattering function is given by the following identical expressions:

N
S(Q)=ZGXP[—°€|1—][(1—|i*j|/N)] (3.4a)
=N+2N§(1 — k/N)exp[— ok (I — k/N)] (3.4b)
k
=N) exp[— ak(l — k/N)] (3.4¢c)
k

S(Q) can be readily calculated [23] in the continuous chain limit (o € 1 and
N > 1, but keeping N finite) as:

U
NZ[exp(— U?)/U] [ dt exp(t®) (3.9
0

where U = (aN)'/?/2 and the Dawson integral can be generated numerically (it
is part of some computer libraries).

3.3 Diblock Linear Copolymer

Consider a diblock A and B linear copolymer (n,, ng, a4, o). The static
scattering function S(Q) is the sum of three contributions:

S(Q) = SaalQ) + Spp(Q) + 28,8(Q) (3.6)
where:

Saa(Q) = nXP(xany) (3.7a)

Ses(Q) = nj P(opns) (3.7b)

San(Q) = nangF(otans)F(agng). (3.7¢)
Note that S,g(Q) can also be written as:

Sas(Q) = [n*P(om) — n Pa(2ans) — 0§ Py(apng)]/2 (3.7d)

where o = (xany + ogng)/n and n = n, + ng.
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3.4 Diblock Ring Copolymer

Consider a diblock A and B cyclic copolymer (n,, ng, o4, og). As in the linear
case, the scattering function is the sum of three contributions with, however:

Sa(Q) = Y. expl— aali — j1(1 — Ii —I/n)] (3.8a)
=N, + 2nAnZA (1 —k/np)exp[ — a k(1 — k/n)] (3.8b)

which becomes in the continuous limit:

1
= 2niexp(— axn/4) | ds(1 — s)exp[aan(nas/n — 1/2)*] (3.8¢)
(4]
where n = n, + ng. As for homopolymer rings, this integral has to be performed
numerically.
The cross correlations structure factor S,g(Q) can be obtained using
Eq. (3.7d) where n?P(an) becomes the structure factor for the full n monomer
ring.

3.5 Alternating Copolymer

Consider a regularly alternating linear copolymer (Fig. 1) of N, blocks A and
Ng blocks B with N being the total number of blocks (N = N, + Ng). Each
A (B) block is comprised of n, (ng) monomers. Two cases will be considered: (1)
N is odd and (2) N is even.

When N is odd, Ny = (N + 1)/2 and Ny = (N — 1)/2; the A/A scattering
functions are:

Saa(Q) = NaS3a(Q) + NESha(Q) . (39)
The self block correlations are straightforward to evaluate:
S5a(Q) = nzP(oany) (3.10)

S

\

<.

Fig. 1. Regularly alternating block copolymer
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and the inter block correlations are:

Na

SE\A(Q) = 2(nf2\/N/Zx) Z (Na — k)FZ(O(AnA)E(OCAnA)(h“E(O(an)k
k=1,2
(3.11)

where (N, — k) is the number of A/A block combinations that are separated by
2k blocks. In the case of gaussian chains:

Sha(Q) = nZF&(otans ) Eg( — oans ) Qg[aana + agng, Ny ], (3.12)
Similarly for the A/B scattering function:

San(Q) = 2(nang/NaNg) 3. (Ns — K)F(ana) F (o p)

k=1,2
E(oans)® VE(ong)* ™" (3.13)
and for gaussian chains:
 San(Q) = (NANgnang)Fg(oans) Fo(opng)
Eg(— 2ans)Eg(— agng)Qg[oana + agng, NaJ . (3.14)
When N is even, Ny, = Ny = N/2 and the corresponding results are:
Sha(Q) = nXF&(2ans)Eg(— aans) Qg [oana + opnp, NaJ (3.15)
Sap(Q) = (NANgnang) Fg(oana)Fe(anng) Eg( — aana) Eg( — agng)
{Qg[oans + agng, Ny + 1]
+ Qgloana + agng, Na1}/2. (3.16)

The B/B and B/A scattering functions are obtained by interchanging the A and
B indices. The total scattering function is the sum of all contributions:

S(Q) = S4a(Q) + Sgp(Q) + 28,5(Q) (3.17)

provided that the monomers have the same scattering length densities. If not,
then the scattering intensity is obtained by weighing the static scattering func-
tions by the appropriate contrast factors (as will be discussed later).

3.6 Star Branched Copolymer

Consider a star branched polymer with N, branches (Fig. 2). Each branch is
composed of two monomeric blocks A and B (copolymer) of n, and ng mono-
mers respectively (the A block is assumed to be at the outside of the branch). The
single-branch correlations Sy, (Q) involve the scattering functions Si (Q),
S (Q), and S55%(Q) that were derived [24] for diblock copolymers:

S (Q) = SR (Q) + SEx(Q) + 2S35(Q) (3.18)
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r\ &_\ Fig. 2. Four-arm star branched copolymer with three
outer A blocks and two inner B blocks

S¥A(Q) = niF?(aana)
#(Q) = n§F?(agns) (3.19)
Sxs(Q) = nangF(aana) F(agng),
while the inter-branch correlations:
Sin(Q) = SXA(Q) + SEs(Q) + 2SXk(Q) (3.20)

involve triblock correlations that were calculated for alternating copolymers
(N = 3 in the preceding section) with n, monomers in each of the two outside
A blocks and 2ng monomers in block B:

Sia(Q) = n3F?(aans) E(o5205)
Sks(Q) = n§F2(agnp) (3.21)
Sis(Q) = nang F(aans) E(ong) F(agng) .

The total static scattering function is therefore the sum of the two contributions:
S(Q) = NpS,(Q) + Np(Ny — 13S;,(Q). (3.22)

Here also, the various self and cross correlations have to be weighed by the
contrast factors in order to obtain the scattered intensity.

3.7 Copolymer Comb

Consider a regular copolymer “comb” (Fig. 3) made of N, side branches
(n, monomers in each) and Ny backbone blocks (ng monomers in each). Note
that usually Ng = N, + | and that the backbone units are called blocks
only for convenience. The various correlation terms involved are [22]:

Saa(Q) = N,SRA(Q) + Na(Ny — DSLA(Q) (3.23)

Sia(Q) = n3P(aany) (3.24)
Aa(Q) = n3F?(aans) Q[ogng, NaJ

Sps(Q) = (Ngng)® P(asNyng) (3.25)
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Fig. 4. Dendrimer polymer gel with two
branches, five generations and a doubling of the
number of units at each generation

The intra-branch self correlations term in the scattering function involves
monomer—-monomer correlations within the same block. Since there are f*~ 1
blocks in generation k, the total number of blocks per branch, ng, is:

N

ng=y f*'=("-n/Af-1) (3.29)

k=1
therefore giving (gaussian monomers are assumed):
(Q) = n?*Pg(an) . (3.30)

The intra-branch cross-correlations between blocks that originate at the same
stem involve summations over blocks in generations k and 1 respectively and
form factors internal to each block:

N N
S5(Q) = 2n*[Fg(an)]? ) 71 ) [ fexp[—an(r—k —1).

(3.31)

These summations can be easily performed giving an analytical expression:

$t(Q) = 2n* {[F(on)]?/[fexp(— an) — 11}
x {fNexp( — anN)[exp(anN) — exp(an)]/
[exp(an) — 1] — f(fN — D)/(f — 1)}. (3.32)
Similarly, for the intra-branch cross-correlations between blocks that originate
from different stems, three summations are involved: the previous two (over
k and r) and a third summation over the number of stem points (m) that have to

be crossed in order to join the two blocks under consideration:
2k-3

N
$(Q) = 20*[Fg(am)]® ) 71 3 (f—pfm-ve2

m=1,3

xexp[ —an(m — 1)]

N
x{1+2 Y f"kexp[—un(r—k)]}. (3.33)

r=k+1
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P / | .——/
ﬁ | Fig. 3. Copolymer comb with four side branches equally spaced
along the chain backbone

Np—1

Sar(Q) = 2(nang/NoANp)F(atan,) Z kF (o ngk) . (3.26)
k

If the B monomers are flexible (gaussian statistics) Sp5(Q) becomes:

Sx(Q) = Z(nAnB/NANB)F(O(AnA)NA{l - FG(CXBUBNA)}/
[exp(opng) — 1] (3.27)

or if they are rigid, then:

Sas(Q) = 2(nang/NaNg)F(aan, ) (Na/opng)
x {[1 — cos(ogngN,4)]sin(opng)
+ [1 — cos(agng)]sin(agngNa)}/{[1 — cos(agng)]?
+ sin’(ang) } (3.28)

regardless of whether the A monomers are flexible (use Fg(oan,)) or rigid (use
Fr(aanya)). Note that orientational correlations have been neglected.

3.8 Starburst Dendrimer

Consider a regular starburst dendrimer [17] formed of N, branches. Each
branch is formed of N generations of monomeric blocks going from the first
generation at the core to higher generations outside. The number of blocks is
“multiplied by a factor { (usually f = 2) in going from one generation to the next.
Note that the “functionality” parameter is defined here as f + 1. Each block is
composed of n monomers forming gaussian links with segment length b.

The calculations of the various structure factors for a dendrimer are rather
straightforward [25], but somewhat tedious. There are four main contributions
to these correlations: (1) one intrabranch self-correlations part, Sy, (2) one
intra-branch cross-correlations part between blocks that originate from the
same stem, Sty , (3) one intra-branch cross-correlations part between blocks that
originate from different stems, S%,, and (4) one interbranch correlations part S;y,.
These various correlations are sketched in Fig. 4.
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In other words, in going from block k to a block 1, one has to meet m stems with
(I — 1)f™~ 172 a5 the number of possibilities. The summations, here also, can be
performed giving:

$%(Q) = 2n?[Fg(an)1* {(f — 1)/[fexp( — 2am) — 1]}
x{A(Q) + B(Q)} (3.34)
A(Q) = [*Nexp(— 2anN) — fZexp(— 2an)]/
[[Zexp(—2on) —1]—dN=D)/f-1)
B(Q) = 2{fNexp( — anN)[fNexp( — anN) — fexp( —an)]/
[fexp(—an)— 1]
— fexp(— an)[[*Nexp( — 2anN) — f2exp( — 2am)]/
[f2exp( — 20n) — 1] — fNexp( — anN)[exp(anN) — exp(an)]/
[exp(an) — 1] + fexp( — an)(fN — )/
(f—1D}/[fexp(—oan) —1].

Note that this term is proportional to (f — 1) and goes to zero for star-branched
polymers (f = 1).
Finally, the inter-branch correlations are:
N N

Si(Q) = n2[Fgam)]2 ¥ 1 Y flexp[ —on(r+ k —2)] (3.35)

k=1 r=1

and are summed up to give:
Sip(Q) = n2[Fg (oam) 1 [ N exp( — anN) — 172/
(fexp(— omn) — 1]%. (3.36)
The total scattering function is the sum of all of these partial structure factors:

S(Q) = Nu[S5(Q) + 85 (Q) + SH(Q) ] + No(Ny, — )8 (Q) . (3.37)

This scattering function goes to the square of the total number of monomers in
the gel, (nN,ng)?, at the zero Q limit as it should.

The calculations presented here agree with those of Burchard et al. [26] who
used cascade theory to investigate the case corresponding to f = 2. In order to
derive these results, we have assumed ideal gaussian monomer blocks that can
cross each other (“phantom” chains). This is unrealistic for high functionality
where the monomer density becomes so high that the reaction sites get screened
therefore stopping the polymerization reaction after about 10 generations.
Moreover, monomer blocks that are far from the core find themselves in
“stretched” configurations (with enhanced excluded volume) due to the lack of
available space. Excluded volume can be incorporated either at the outset in
which case the summations would have to be performed numerically or in an
ad-hoc fashion (as mentioned before). The approach presented here is, however,
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Fig. 5. Kratky plot for SANS data taken from solutions of starburst polyamidoamine dendrimers
with seven generations in deuterated water (extrapolated to zero concentration) and comparison
with the gaussian blocks dendrimer model with b = 0.48 nm, n = 10, N = 7, N, = 3 and { = 2. Salt
was added to the solution in order to screen out the coulomb interactions

a first start in the modeling of such complicated structures as shown in Fig. 5
where SANS data taken from solutions of starburst polyamidoamine
dendrimers with seven generations in deuterated water are compared with
various models including the gaussian blocks dendrimer model described here
(withb =0.48 nm,n = 10, N = 7, N, = 3 and f = 2). In order to reach the single
dendrimer scattering limit, low concentrations (less than 1% volume fraction)
were measured and data were extrapolated to zero concentration.

4 Dilute Polymer Solutions

The single-chain structure factors calculated in the previous sections correspond
to the infinite dilution limit. This limit also corresponds to zero scattering
intensity and is not useful so that concentration effects have to be included in the
modeling of polymer solutions. First, Zimm’s single-contact approximation [5]
is reviewed for dilute polymer solutions; then, a slight extension of that formula
which applies to semidilute solutions, is discussed.

4.1 Zimm’'s Single Contact Approximation

Consider a dilute polymer solution with N, polymer molecules of N monomers
each. The polymer volume fraction ¢, is often used as the concentration
parameter; it is given by: ¢, = NN, v, /(NN v, + Nyv,), where v, and v, are the
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monomeric and solvent molecule volumes respectively and N is the number of
solvent molecules. Note that, sometime, the polymer concentration C, = I,/V
(V= NN,v, + N,v, being the total sample volume) is used instead.

Zimm’s approximation [5] assumes that inter-chain interactions occur only
through single contacts. Given two monomers i and j that belong to two
different chains (say, called 1 and 2), the two-chain distribution function is:

N
P(ry, ry;) = P(rli)P(ij){l -V Z 5(1'11(,21)} 4.1

k.1

where P(r) is the single-chain distribution function, ry, ) = ry, — Iy, v is the
excluded volume during the binary interaction, and d(r) is the Dirac delta
function. The scattering function for the whole sample is the sum of two
(single-chain and inter-chain) contributions which are:

S(Q) = NyS:(Q) + Np(N, — 1)S;(Q) (4.2)
8(Q) = N’P(aN) (4.3)
- 8i(Q) = — (v/V)N*P2(aN)

where we have neglected the Fourier transform of the average polymer density
(which is identically zero except at Q = 0 which is an experimentally irrelevant
limit):

N
(PQ)> = (I/N)}, Cexp( —iQ 1)) ~ 8(Q). (4.4)
This is equivalent to assuming a constant polymer density ({p(r)>) in configura-
tion space. The second virial coefficient A, is related to v as follows:
N2v = 2M2A,/N,, 4.5)

where M, and N,, are the polymer molecular weight and Avogadro’s number
respectively. The scattering function is therefore (N, being always large):

S(Q) = N,N2P(aN){l — vC,N2P(aN)}. (4.6)

This formula describes dilute solutions (C, < 1/vN?) fairly well despite the fact
that it ignores macromolecular shape changes during binary chain interactions.

4.2 The Inverse Zimm Formula

The inverse Zimm formula involves the following approximate form:
S71(Q) = {1 + vC,N?P(aN)}/N,N?P(aN) .
= 1/N,N2P(aN) + v/V. 4.7a)
or in terms of volume fractions:

S "HQ) = (v/V){1/Nd,v,P(aN) + v/v}. (4.7b)
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This formula is the basis of the Zimm Plot which consists in plotting the inverse
of the scattering intensity, S ~(Q), vs Q? which shows a linear variation at low
Q and in dilute solutions. Extrapolated values (Q — 0, C, — 0) of the intercept
and the slope yield the degree of polymerization N and the excluded volume
v (or second virial coefficient A,) respectively. Zimm’s formula can describe
scattering data accurately well into the semidilute concentration region. This
region is defined for concentrations above an overlap concentration C} which is
defined in either of the two following ways:

C¥ = M,/N,R} or Cf=3M,/4nN,R; (4.3)

where R, is the macromolecular radius of gyration defined before. Note that this
overlap concentration does not correspond to a “critical” state of the system.
The inverse Zimm formula, which is the “approximation of an approximation”,
works surprisingly well due to the fact that the second approximation,
(1 — x} ~ 1/(1 + x), re-sums higher order terms which account for series of
single-contacts. It applies whether gaussian or rigid rod statistics are assumed.
Actually, for rigid rods, Zimm’s single contact approximation works better
because the third and higher virial coefficients are small. Zimm’s single contact
approximation, however, neglects orientational correlations which can be im-
portant in semidilute solutions of rigid rods. Because it does not account for all
possible correlations, the inverse Zimm scattering formula is essentially a mean
field treatment.

Some misgivings as to the use of such a mean field approach to describe
polymer solutions have been presented in the literature [4, 9]. For instance, the
mean field approach cannot explain the experimentally observed molecular
weight dependence of the excluded volume v and does not account for entangle-
ments. A renormalization group description of polymer solutions exists in the
literature [10]. It is more successful than the mean field description for dilute
and semidilute solutions where concentration fluctuations are non-negligible
(especially in good solvents). For instance, it can account for the molecular
weight dependence of the excluded volume v. However, due to my lack of
knowledge concerning this research area, these are not included here. Moreover,
scaling theory arguments [4, 9] and Monte Carlo predictions [27] are available
for dilute and semidilute polymer solutions. These, however, cannot be used to
fit experimental data (scaling theory cannot predict prefactors and Monte Carlo
calculations can be used only to compare trends).

5 Concentrated Polymer Solutions

A characteristic concentration C}* can be defined [28] to separate the
semidilute and concentrated regions:

C#* = Cx(R2/R{)* (5.1)
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where R? and R§ are the end-to-end chain distances at zero concentration and
under theta conditions respectively. As the concentration increases, excluded
volume effects start being screened so that they become negligible in polymer
melts whereby random walk statistics are recovered (zero second virial coeffic-
ient). In semidilute and concentrated regions, one could define concentration
blobs between entanglement points. Chains would display excluded volume
effects within a concentration blob but the blobs themselves would follow
random walk statistics. This approach will not be pursued here. Instead, we will
discuss a justification of Zimm’s inverse formula in terms of series of single-
contacts (the Benoit-Benmouna model [29]) and review the “high concentra-
tion method” [6-8] which is an alternative to the Zimm approach and permits
the separation of single-chain and interchain structure factors by performing
measurements from samples with different deuterated polymer fractions (keep-
ing the total polymer concentration constant).

5.1 The Benoit—Benmouna Model

For non-dilute concentrations (C, > 1/vN?), a binary interaction between two
macromolecules can occur either through a direct contact, or through a series of
contacts [29] with other chains (third, fourth, etc.). If k chains are involved, the
scattering function is:

S(Q) = N,NZP(@aN){l — vC,N2P(aN) + v2CZN*P*(aN)
+ 0+ (= VECENZEPE(aN)}. (5.2)
This series can be re-summed to give the inverse Zimm formula:

S(Q) = N,N2P(aN)/{1 + vC,N2P(aN)} (5.3)

I RANDOM PHASE APPROXIMATION l

Interactions Included

and and etc

Interactions Neglected

Fig. 6. Schematic representation of the inter-
chain interactions that are included or neglected
in the random phase approximation

and | and and and etc
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which still does not contain contributions from multiple contacts between two
chains. Also neglected are “loop” (sometime called “ring”) interactions within
a chain, multiple contacts with other chains, etc. (see Fig. 6). The loop interac-
tions are the ones that account for excluded volume effects and the multiple
contacts properly account for the molecular weight dependence of the excluded
volume (second virial coefficient) in the renormalization group theory [10].
Moreover, ternary interactions (neglected in the mean field approach) are non
negligible in highly branched systems (such as star polymers with a large
number of branches).

Effects due to macromolecular shape changes during single-contact inter-
actions can, within the Benoit-Benmouna theory, be included in an ad-hoc
fashion by renormalizing the single-chain structure factor to make it concentra-
tion dependent. This approach is often used to describe polymer solutions up to
the concentrated region.

5.2 The High Concentration Method

Consider a polymer solution consisting of protonated and deutérated polymers
(concentrations Cy and Cp, respectively) that have the same degree of polymeriz-
ation N. The scattered intensity is proportional to the structure factors for the
polymer-polymer correlations Spy(Q), Spp(Q), Sup(Q), polymer—solvent cor-
relations Spg(Q), and solvent-solvent correlations Sgs(Q). The protonated,
deuterated and solvent molecule scattering lengths are called ay, ap, and ag and
{ap} is the average polymer scattering length. The scattered intensity can be
expressed in terms of an absolute cross section as:

dZ(Q)/dQ = [a}Spp(Q) + afi Sun(Q) + 2apauSpu(Q)
+ 2ag{a, } Sps(Q) + 2§ Sss(Q)1/V . (5.4a)

Assuming an incompressible polymer solution allows the elimination of the last
two terms:

dZ(Q)/dQ = [(ap/vp — as/vs)*vdSpn(Q) + (an/Vi — as/vs)* VaSun(Q)

+ 2(ap/vp — as/Vs an/Vu — as/vs) vpvuSpu(Q)1/V.
(5.4b)

The various structure factors can be split, here also, into single-chain (P} (Q),
etc.) and interchain (Php(Q), etc) parts:

V5 Spn(Q)/V = ND%VD[P]S)(Q) + ¢ Pbp(Q)]
Vi SHH.(Q)/V = Nu¢ouvu[PH(Q) + duPun(Q)] (5.5)
VpVuSpu(Q)/V = (NDd)DVDNh-(bper{s)l/z(d)Dd)H)l/z Phu(Q) .

The high concentration method assumes that deuteration does not change
chain conformations and interactions (provided that the total polymer concen-
tration is kept constant); ie., that P}(Q)=P}(Q) (call it P(Q)) and
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PLo(Q) = PLiu(Q) = PL,;(Q) (call it P,(Q)) along with N = Ny, (call it N) and
vp = vy (call it v,). Defining a “total” polymer—polymer structure factor
P (Q) = Ps(Q}) + ¢pP(Q), the main result is obtained in terms of the various
contrast factors:

{Af} = (ap/vp — as/Vs)> dn/dp + (au/Ve — as/vs)” Ou/dp (5.6)
{Ap}? = [(ap/vp — as/Vs)dp/dp + (an/ve — as/Vs) du/dp]?

as:
dZ(Q)/dQ = [{AZ} — {Ap}2INGpvePs(Q) + {Ap}*NopvpP1(Q) .
(5.7)

where we have defined the following: { - - - } is a composition averaging and
¢p 1s the total polymer volume fraction (¢p = dp + dy), so that

{Plp} = apdu/dp + apdp/dp is the average polymer scattering length.
The first contrast factor can be simplified as:

[{A2} — {Ar}?] = (an/vu — ap/VD)* P du/ 3 (5.8)

where ¢’s are the volume fractions. The structure factors Pg(Q) and P(Q) can,
therefore, be obtained by performing two measurements (where only ¢p/dy is
varied, keeping ¢p = ¢, + ¢y constant). Because Pr(Q) represents correlations
from all monomers with equal weighting, it has a weak Q dependence. Note
that, if the incompressibility assumption had not been made, one would need
four different sample compositions instead, in order to determine the four
unknown structure factors Pg(Q), Pr(Q), Sps(Q) and Sgs(Q).

This method applies for whatever polymer concentration. In practice, it is
preferable to use high concentrations in order to increase the signal-to-noise
ratio and therefore minimize counting time. However, it can also be applied to
semidilute or even dilute solutions where Zimm plots are useful. It also applies
not only to linear polymers but also to any form of chain architecture and to
deuterated/protonated mixtures in non-solvent matrices such as polymer blends
or polymer networks provided that changing the deuterated fraction does not
change the homogeneous nature of the mixture (i.e., no change to the chain
conformations and interactions).

6 Multicomponent Blends of Flexible Homopolymers
and Copolymers

6.1 The de Gennes Formula

Consider a binary polymer blend (A and B components) of gaussian chains with
degrees of polymerization N,, Ny, volume fractions ¢4, ¢y, and monomeric
volumes v,, vy, respectively. When the blend is a homogeneous phase mixture,
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de Gennes [3—4] used the Random Phase Approximation (RPA) to derive an
expression for the structure factors of the fully interacting system, SpA(Q),
Sps(Q), SAp(Q), in terms of those of the “ideal” (non-interacting) system S%,(Q),
S85(Q). S2A(Q) and S$s(Q) are the single chain structure factors (note that
SR8(Q) = 0 except for A/B copolymers). Assuming effective interaction poten-
tials Wa 4, Wpp and Wyg between A and B monomers, the linear responses of the
fluctuating densities {p,(Q)) and {pg(Q) ) to externally applied (weakly pertur-
bing) potentials U, and Uy are given by:

(palQ)> = — XRa(Q)[Ux + Wan<{pal(Q)> + Wap{ps(Q)>1/ksT 61
(Pa(Q)> = — XBa(Q)[Us + Waa{pa(Q)) + Wpa(pa(Q))I/ks T

where X84 (Q), etc., represent “bare” response functions. The isothermal incom-
pressibility ({p,(Q)> + <{pp(Q))> = 0) condition allows the elimination of one of
the equations. The fluctuation-dissipation theorem relates the response fun-
ctions to the structure factors as follows: X$4(Q) = $avaS(Q)/N,, etc. Recall
that S3A(Q) = {pa( — Q)pa(Q)>. Moreover interacting response functions,

Xaa(Q) = davaSaa(Q)/Ny = Ny aN4), etc, can be introduced
th[}/(\)ugh; INFTVN A M A
(PalQ)) = — Xpa(Q)(Us — Up)/kpT (6.2)

so that the externally applied potentials can be eliminated from these coupled
equations. De Gennes’ formula therefore relates the interacting response to the
bare response functions:

1/Xaa(Q) = 1/XRA(Q) + 1/X8s(Q) — 2xa8/Vo (6.3)

where vg = (v4vg)!/? is the “lattice cell” volume and the Flory-Huggfins inter-
action “chi” parameter Y, has been defined as:

YaB = Wap/kgT — (Waa + Wgp)/2kyT . (6.4)

Yap appears here as a universal parameter. However, it was found experi-
mentally to depend on a number of factors [30-33] such as temperature,
molecular weight, composition, inter-monomer distance (and therefore on the
scattering vector Q), isotopic constitution, tacticity, microstructure, etc. These
dependencies are shortcomings of the crude RPA description. The scattered
intensity (macroscopic cross section dX(Q)/dQ) is given by:

(an/va — aB/VB)Z/dE(Q)/dQ = 1/NadavaPglaaNy)

+ 1/NgdpvePg(xgNg) — 2xa/Vo
(6.5)

where we have used scattering length densities as/v,, etc. This de Gennes
formula has found wide use in polymer blends and has been instrumental in
determining spinodal points (value of y,p for which the scattered intensity
becomes infinite) and mapping out phase diagrams. Zimm’s formula is re-
covered from the de Gennes formula by taking N, = N, Ng = | and defining the



110 B. Hammouda

excluded volume by: v = v2/v.ds — 2xpsVZ/Vo (v is the excluded volume, v, is
the solvent molecule volume, v, is the cell volume, and V is the sample volume).

6.2 The Benoit—Akcasu Generalization

Benoit et al. [11-12] and Akcasu et al. [13-15] have extended de Gennes’
formula to describe multicomponent polymer systems. Their results are repro-
duced in Appendix A in a matrix form (following Akcasu [13-15]). Consider
a number of components (noted A, B, etc.) with degrees of polymerization Ny,
etc., volume fractions ¢4, etc.,, monomer volumes v,, etc. Some of these com-
ponents could be block copolymers. Having one of the components (called
“matrix” component) as a homopolymer simplifies the calculations. The main
result is:

X1Q) =Xo'(Q+ V(Q) (6.6a)

where X(Q) and X(Q) are the bare and interacting system response matrices
respectively and V(Q) is an excluded volumes matrix (note that v3V(Q) and not
V(Q) alone has the dimension of a volume). Equivalently:

X(Q) = Xo(Q) [T+ V(Q X, (Q)T (6.6b)

where 1 is the identity matrix. The macroscopic scattering cross section (scalar
quantity) is obtained as:

dZ(Q)/dQ = AT-X(Q).A (6.7)

where A is a column vector (AT is the corresponding row vector) containing the
scattering length densities of the various components (A, B, etc.) and that of the
“matrix” (M) component; for example, A, = (as/va — ay/Vnm). Appendix A de-
scribes multicomponent systems of homopolymers and copolymers. If only
copolymers were present, then the “matrix” component would have to be one of
the copolymer blocks; this situation involves more complicated expressions
which are derived in Appendix B.

In the case of a compressible polymer mixture, the RPA yields the same
result but with the potentials matrix W replacing the excluded volumes
matrix V:

X = Xo[l+ W'Xo]7l

Moreover the components of vector A change to become A, = a,/v,, etc. An
Ornstein—Zernike (OZ) approach (referred to as the integral equation theory)
describing multicomponent compressible polymer blend mixtures has been
extensively investigated [35]. The muiticomponent OZ equation relates the
“direct” correlations matrix C and the “total” (i.e., direct and indirect) correla-
tions matrix H as:

H = X,CX, + X,CH . (6.82)
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By definition, the structure factor is the sum of single-chain (“bare”) X, and
interchain H structure factors: X = X, + H. The formal solution to the OZ
equations:

H = X CX, [T - X,C]! (6.8b)
is identical to the RPA equation for compressible mixtures provided that
a Mean Spherical Approximation (MSA) closure relation, C = — W/kgT, is

used for large intermonomer distances. The RPA approach considers the mean
field potentials W’s merely as parameters whereas realistic constraints (both for
large and short distances) are used in order to solve the integral equations.

6.3 Three Component Flexible Homolymer Blend

The multicomponent RPA formalism [11-15] is applied, here, to a ternary
incompressible mixture [11-16] of homopolymers (A, B, C). Assuming that
component C is the “matrix” component, one is left with 2 x 2 matrices for
components A and B:

X24(Q) = NodavaP(0a Ny )

X38(Q) = NpdgvP(aNp)

XRs(Q) =0 (6.9)
and the third component, C, enters only through:

Vaa(Q) = 1/X2(Q) — 2xac/Vo

Vip(Q) = 1/X2c(Q) — 2xsc/Vo

Vas(Q) = 1/X2c(Q) + %a/Vo — Xac/Vo — Xsc/Vo (6.10)

where the N’s, ¢’s, and v’s are the degrees of polymerization, volume fractions,
and monomeric volumes respectively. As customary, v, is defined as the volume
of the reference cell. The single-chain structure factors P(aN)’s are taken to be
Debye functions for flexible polymers:

P(asNy) = 2[exp(— Q*Rgs) — 1 + Q*RG1/Q*R;a (6.11)

and the radius of gyration is given in terms of the statistical length b, as
RZs = Nab3i/6. Partial structure factors can be obtained as:

Xaa(Q) = XRa(l + VppX3p)/[(1 + VaaXRa)(1 + Vs Xis)
— VisX2aX3s]
Xpe(Q) = X8a(1 + Vaa XRa)/[(1 + VaaXRa)(1 + VppXgs)
~ VieX2aX8]
Xas(Q) = — X2aVasX8s/[(1 + VaaXRa)(1 + VppXgp) ;
— VisXRaX3s] (6.12)
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where the Q-dependence has been dropped for convenience. Note that the
spinodal point is reached when the denominator of the partial structure factors
vanishes.
The neutron scattered intensity (macroscopic differential scattering cross
section dX(Q)/dQ) is given by:
dZ(Q)/dQ = (as/va — ac/ve)* Xaa(Q) + (as/ve — ac/ve)* Xss(Q)

+ 2(as/va — ac/vc)(@s/Ve — ac/ve) Xap(Q) (6.13)
where the a’s are the monomeric scattering lengths for the different components.
Note that, due to the incompressibility assumption, this result is independent of
the contrast between components A and B. Note also that the three components

(A, B, C) do not have to be linear chains; they could correspond to whatever
chain architecture provided that the single-chain structure factors are known.

6.4 Blend Mixture of a Copolymer and a Homopolymer
(Both Flexible)

We assume, now, that the three component blend considered in the previous
section consists of a copolymer A/B (could be a diblock, triblock, etc, or an
alternating copolymer) and a homopolymer C [11-15]. The notation and
formalism of the previous section hold but now X8;(Q) = 0 (note that X$5(Q)
shows a peak in the scattering function). The partial structure factors become:

Xaa(Q) = {XRa(l + VgaX2p + Vs Xis)
— X28(VeaX2a + VesXia)}/A
Xpa(Q) = {XBn(l + VapXBa + VaaX3a)
— XBA(VapX8s + VaaX2s)}/A
Xas(Q) = { — XRa(Vaa X35 + VasXis)
+ XRs(1 + VaaX8a + VasXBa)}/A (6.14)
where:
A =14V X%a + VapXBa)(1 + Vea X325 + VepXis)
— (VaaX8s + VasX8s)(VeaX2a + VeaX3a). (6.15)

The V’s and the bare structure factors X$4(Q) and X§p(Q) are still given by the
same expressions as in the previous section, and:

X28(Q) = (¢adsvavs)?S2s(Q)/(NsANp)'/? (6.16)

and S%z(Q) are given in Sect. 3 for diblock, and alternating copolymers for
example.
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7 Multicomponent Blends of Stiff Homopolymers and Copolymers

7.1 General RPA Equations for Mixtures of Stiff Polymers

Consider a number n of stiff polymer components (here “stiff” is used to mean
“semiflexible”) and define orientation-dépendent ideal and interacting response
(n x n} matrices Xy(Q, u, u’) and X(Q, u, u’) respectively. In this case, orienta-
tional correlations have to be included in addition to the usual isotropic
ones. Dot et al. [36-38] have developed the theory for solutions of stiff
homopolymers. Their formalism is applied in Appendices C and D to multicom-
ponent blend mixtures of stiff polymers without and with the incompressibility
condition respectively. The interaction potentials comprise anisotropic (also
called nematic) contributions as well as the usual isotropic ones:

W', u') = Wy — W, (v’ - I/3):(w’u” — 1/3), (7.1)

where v’ and u” represent the orientations of two test rods. The W, potential
factors are the Maier-Saupe interaction parameters. The main result for the case
of compressible stiff polymer mixtures (see Appendix C) is:

X ={T+Xo-Wo + (2/3R}-W, "M "Ry~ Wy} !
x {Xo + (2/3)RT-W, M 1Ry} (7.2)

where the matrix M = [1 — (2/3)T,+ W, ] has been used, kg T dividing the
potential parameters has been omitted for notational convenience, and the
following orientational moments (n x n matrices) of the ideal structure factors
have been defined:

XO(Q) = jdu j‘ du’ XO (Qv u, u/)

X(Q) = [du{du'X(Q,u,u)

Ro(Q) = (3/2) [ du [ du'X((Q, u, w') [(q-u)* — 1/3] (7.3)

R(Q) = (3/2) { du { du' X(Q, u, w) [(q-w)* — 1/3]

To(Q) = (9/4) fdu [ du'Xo(Q, u, w)[(q-u)* — 1/3][(q-w')* — 1/3] .
where rq is the unit vector along Q. Although the incompressibility assumption
is expected to be a reasonable one for flexible polymer mixtures, it is not known
whether it could also be realistic for mixtures of flexible and rigid polymers.

Making that assumption, the general result (for incompressible mixtures of stiff
polymers) (see Appendix D) is:

XR‘RI = PT' {XO + (2/3)R6.W1 'M—~1 'R0}71
X {1+ Xo-Wo + (2/3RE-W, M~ 'R W, } - P (7.4)
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where we have followed Akcasu [15] and introduced an n x (n — 1) matrix
P = Col[l, — Ef] (¥is the (n — 1) x (n — 1) identity matrix and E} is an (n — 1)
row vector comprising only ones) in order to apply the incompressibility
constraint at the outset.

The isotropic-to-nematic transition is defined by the characteristic equation -
Det{M} = 0 (where Det represents the determinant of a matrix). If the Van der
Waals interactions were “turned off” (W, = 0) so that only nematic interactions
are left, then M would be the denominator of X so that X would blow up for this
condition (Det{M} = 0). Above certain critical values of W,’s the blend forms
the nematic phase. As in the case of purely flexible mixtures, the spinodal
condition is;

Det{l+Xo'WO+(2/3)R3'W1'M_1'R0'W0}ZO. (75)

Here also kg T = 1 has been set. Since blend mixtures of completely rigid rods do
not exist in the one-phase region, the approach described here, will be applied to
mixtures of rigid and flexible polymers. The case of polymer solutions (results
from Doi et al. [36-38]) can be recovered when one of the components is taken
to be a solvent.

7.2 Binary Blend of a Flexible and a Rigid Rod Polymers

In the case of a binary incompressible mixture of stiff homopolymers (compon-
ents are named A and B), the above equations simplify. Assuming that compon-
ent A is flexible (freely-jointed chains) and B is rigid (rigid rod polymers) and
imposing the incompressibility condition, the following result can be obtained:

Xaa = {2/)REWip X34 + [1 — (2/3) TRs Wis IX8a XR8}/

{2REEWihp[1 — 2x48XRa]

+ (XRa + X8 ~ 2%an X2 XBs)[1 — (2/3) TEs Wis 1} (7.6)
where X8 = R84 = R%s = R8s =TS, =T$s =0 and the remaining ideal
structure factors can readily be calculated.

XRa(Q)/Nadava = {[1 +jo(Qba)INA/[1 — jo(Qba)]
— 2jo(Qba) [1 — j5*(Qba)]/
[1 —jo(Qba)J*}/NZ (7.7a)

Xis(Q)/Npdy v = | dxj5(Qbs Ngx/2)

= 2[cos(QbgNg) — ]]/(QbBNB)Z
+ 251(Qbg Ng)/Qby Ny (7.7b)
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1
R5a(Q)/Npdyve = (3/2) | dx(x* — 1/3)j3(QbsN;x/2)
0

= (3/2){2[5 — cos(QbgN5)]/3(Qby Ny)?
— 2sin(QbgNg)/(QbsNg)?
— 28i(QbgNp)/3Qby Ny } (7.7¢)

TEs(Q)/Nydpve = (9/4) | dx(x* — 1/3)? j§(QbgNyx/2)
0

= (9/4){ — 10/9(QbgNg)* + cos(QbgNy)

x [2/9(QbgNg)* — 4/(QbgNg)*]

+ sin(QbgNp) [4/(QbgNp)® — 2/3(QbgNg)’]

+ 28i(QbgNg)/9(QbgNp)} (7.7d)
where jo(X) = sin(X)/X is the spherical Bessel function of order zero and Si(X) is
the sine integral function.

The isotropic-to-nematic transition is determined by the condition
[1—(2/3)T3sWip/ksgT] = 0 whereas the spinodal line is obtained when the
denominator of X, is equal to zero. These conditions are evaluated in the
thermodynamic limit (Q = 0) in Fig. 7 for a Maier—Saupe interaction parameter
Wis/kg T = 0.4y, and for N, = 200, Ny = 800, v4 = vg = 1. When the volume
fraction of component A(d,) is low, the isotropic-to-nematic phase transition is
reached first whereas at high ¢4 the spinodal line is reached first. In the second
case, the macromolecules do not have a chance to orient themselves before the
spinodal line is reached. This RPA approach is a generalization of the Doi et al.
[36-38] results (that were developed for lyotropic polymer liquid crystals) to
describe thermotropic polymer mixtures. Both approaches cannot, however,

XAB x103

Fig. 7. Phase diagram for a binary blend mixture of a flexible (A component) and a rigid (B
component) polymers with: Ny = 200, Ng = 800, v4 = vz = 1, and W] /kgTy,, = 0.4 as predicted
by the RPA
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reproduce the narrow two-phase region between the isotropic and nematic
phases as observed experimentally or as predicted by the lattice model approach
[44]. Because the isotropic-to-nematic phase transition is a first order
transition, the nematic phase can be obtained only after separation into two
phases (one nematic and one isotropic) upon heating. The RPA formalism
presented here is not valid beyond the spinodal line.

7.3 Binary Mixture of a Flexible and a Rigid Rod Diblock
Copolymer

In the case of a diblock copolymer with flexible A blocks (freely jointed chains)
and rigid B blocks (rigid rods), the intercomponent ideal structure factors are no
longer equal to zero therefore leaving only: R¢s = Ry = Taa = TSs = 0.
The volume fractions become related to the molecular weights:
ba = Nava/(Navs + Ngvg), dg =1 — ¢4. The general result in the matrix
form reduces in this case to the following generalization of the Leibler formula
[39] to include chain stiffness:

Xaa = {(2/3) Wiz [REFXEA — 2REARB XRp + REAXEs]
+[1 = (2/3) T Wis1( — X&& + X34 X8s)}/
{(XRa + 2XRs + X8s + 2xan X35 — 2xanXRa XBs)
x[1 —(2/3)T8s Wis ]
+(2/3)Wis[REZ + 2R, R s + R}
~ (4/3) a8 Wi [RREXRa — 2REAREsXRs + REXXB1}  (7.8)

where the ideal structure factors X$4, X2, R8s, and T3y are given in the
previous section and the remaining ones are given below:

XRB(Q)/(NAd)AVANBd)BVB)l/Z
= {[1 — jo(Qb)M* /N4 [1 — jo(Qba)]}

X _1( dx jo(QbgNgx/2)cos(QbgNgx/2)
= {[1 = jo(Qba)N*J/NL[1 — jo(Qba)]} Si(QbpNy)/Qby Ny (7.9a)
RgA(Q)/(NA(bAVANBd)BVB)I/Z
{1 = jo(Qba)™ /N4 [1 — jo(Qba)]}
X i dx [3x? — 1/2]j,(Qbg Npx/2)cos (Qbg Nyx/2)

=1{[1 — Jo(QbA)NAT/NL [T — jo(QbA)]}(3/2){ — cos(QbgNg)/
(QbgNy)? — Si(QbyNy)/3(Qby Np)
+ sin(Qby Ny )/(QbgNg )* } . (7.9b)
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These results agree with those reported by Holyst and Schick [40—-41]. The
structure factor X,,(Q) has been plotted in Fig. 8 using the following para-
meters: Ny = 200, Ny = 800, v4 = vg = 1, yag N = 19 (where N = N, + Ng),
and for three values of the Maier—Saupe interaction parameter:
Wia/ksg Tyas = 0, 0.4 and 0.6. Orientational ordering is seen to increase as the
Maier-Saupe parameter increases. The location of the peaks in Figure 8 corres-
ponds to QbgNg = 27, 41 and depends only on the length of the rigid rods
(bgNp). The peaks observed here are a characteristic of taking orientational
moments of the structure factor for a rigid rod; these peaks appear even in the
ideal (unperturbed) rigid rod case (Rggo(Q) and Tggo(Q), for example, show
peaks at QbyNg = 27, 4m). Figure 9, on the other hand, represents the effect of
varying the relative molecular weight of the flexible block with: vy = vy = 1,
YagN = 15, Whp/kyTyap = 04 and N,/N taking on three different values:
NA/N =02, 0.7 and 0.8. The first curve corresponds to a point in the phase
diagram which is closer to the isotropic-to-nematic phase transition line than to
the isotropic-to-lamellar transition line. The other two curves correspond to
points that are closer to the isotropic-to-lamellar spinodal line instead. The
word “lamellar” is used to name the ordered phase even though this could have
another morphology since the RPA cannot predict the symmetry of the ordered
phase. Figure 9 shows that when the rigid rods get shorter, the number of peaks
decreases (from two to one) because the first peak occurs at higher Q so that the
higher order peaks are completely “damped” out. The sharpness of the peaks in
Figure 8 points to the fact that the domain boundaries (in direct space) are

1
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Fig. 8. Structure factor for a melt of diblock copolymers made of flexible freely-jointed (A compon-
ent) and rigid (B component) blocks with: Ny = 200, Ng = 800, vp =vg =1, by =bg = b, and
N = 19 (where N = N, + Ng). The three curves correspond to Wllm/k,;T)(AB = 0,04, and 0.6

XAB
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Fig. 9. Structure factor for a melt of diblock copolymers made of flexible freely-jointed ( A compon-
ent) and rigid (B component) blocks with: y, ;N = 19 (where N = N, + Np), W}, /kgTy,, = 04,
v, = vg = 1 and b, = by = b. The three curves correspond to N,/N = 0.2, 0.7, and 0.8 respectively

sharper in this system. When the rigid rods get shorter (Figure 9), this sharpness
decreases leading to a regular sinusoidal profile for the density of rigid rods.
Various phase diagrams for diblock copolymers have been investigated by
Holyst and Schick [41]. Here also, it is emphasized that the RPA approach
should be considered only for qualitative observations because it cannot predict
the narrow two-phase channel between the nematic and isotropic regions which
is due to non-mean field contributions.

Now that the RPA has been applied to various polymer mixtures, specific
cases are considered in the following sections along with SANS data analyzed
with arguments similar to the ones discussed in the previous sections.

8 Specific Examples

In the following sections, examples of SANS investigations from polymer
systems are considered. Simple cases involving polymer solutions and blends
are described in order to demonstrate the modeling approaches discussed here.
These examples have been borrowed from my recent work in collaboration with
other scientists at the National Institute of Standards and Technology.
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8.1 Semidilute Solution of Deuterated Polystyrene
in Dioctyl Phthalate

A semidilute solution [42] of high molecular weight deuterated polystyrene
(M, = 1.95x 10° g/mole, M,/M, = 1.64) in dioctyl phthalate (DOP) at a
volume fraction of 2.83% of polystyrene was measured by SANS at room
temperature. A characteristic intensity behavior I{Q) was obtained after data
correction (solvent incoherent scattering, empty cell scattering and usual back-
ground corrections, etc.) and was circularly averaged. The reduced 1(Q) data
was then fitted to the following form:

(@p/Vp — ay/v)*/T(Q) = 1/Nyv, P (aN) + 1/dvs — 245/ Vo (8.1)

where the same notation is being used: degree of polymerization: N = 18750,
polymer volume fraction: ¢, =283%, molar volumes: v, =100 cm?3,
v, =398 cm?, contrast factor: (a,/v, — a,/v{)?N,, = 5.57 x 10~ mole/cm*,
Debye function:

Ps(aN) = 2[exp( — aN) — 1 + aNJ/(aN)? (8.2)
with fully swollen radius of gyration:
aN = Q?RZ = Q?b?/(2v + 1)(2v + 2) (8.3)

and v = 0.6 (good solvent conditions). Results of the fit were: segment length:
b = 0.725 nm and interaction parameter: y,./Vo = 9.68 x 10™* mole/cm?. The
spinodal value is ¥,./Vo = 1/2N¢,v, + 1/2¢,vs = 1.297 x 107* mole/cm?. The
experimentally obtained and the calculated intensities are shown in Fig. 10 for
comparison.

8.2 Binary Blend of Deuterated Polystyrene and
Poly (vinyl methyl ether)

Consider a binary polymer blend [43] of deuterated polystyrene, PSD,
(M,, = 1.95 x 10° g/mole, M, /M, = 1.02) and poly(vinyl methyl ether), PVME,
(M,, = 1.59 x 10° g/mole, M,,/M, = 1.3) with a composition of 48.4% PSD
(volume fraction). SANS data were taken at various temperatures ranging from
ambient to 160 °C. De Gennes’s RPA formula:

(an/Va — aB/VB)Z/dZ(Q)/dQ = 1/NadavaPg(aaN)
+ 1/Ng¢gvePg(agN) — 2an/vo (8.4)

was used to fit the reduced data (Fig. 11) with A as the PSD component and
B as the PVME component and with: Ny = 1741, N = 2741, v, = 100 cm?/
mole, vg=554cm?/mole, (ar/va — ap/vp)*N,, = 6.07 x 10~ mole/cm*,
b, = 48.4%, etc. Results of the fits were: bpgp = 0.8 nm, bpyye = 0.6 nm and:

Apspypvme/Vo = 9.73 x 1074 — 0.416/T, (in mole/cm®) (8.5)
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Fig. 10. SANS from deuterated polystyrene (M,, = 1.95 x 10° g/mol) in dioctyl phthalate solution
(3% polymer weight fraction). Experimental data (arbitrary units) and results of the fit to the inverse
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Fig. 11. SANS from deuterated polystyrene/poly(viny! methyl ether) at equal compositions
(50%/50% weight fractions). Experimental data (macroscopic cross section) and fits to the de
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where T is the absolute temperature (Fig. 12). The PSD/PVME blend is a lower
critical solution temperature (LCST) system and shows spinodal decomposition
for ypsppvme = 1.23 x 1072 mole/cm? (value which makes the right-hand side of
de Gennes’s equation equal to zero); i.e., at 160°C. These results agree with
previously reported values [31] for this system.

8.3 Ternary Blend of Deuterated Polystyrene/
Poly(vinyl methy! ether)/Protonated Polystyrene,
The High Concentration Method

Consider a ternary homopolymer blend mixture of PSD, PVME and proto-
nated polystyrene (PSH). PSD and PVME have the same molecular weights as
in the previous section and for PSH: M, = 1.90 x 10% g/mole, M,,/M, = 1.04.
The extra parameters needed to describe the blend are: Npgy = 1827,
Vpsy = 100 cm3/mole, (apsi/Vpsn — apvme/Vevme )> Nay = 1.79 x 104 mole/cm®.
Three compositions corresponding to the same PVME volume fraction were
measured by SANS:

sample 1: 48.4%/51.6%/0% PSD/PVME/PSH
sample 2: 36%/51.1%/12.9% PSD/PVME/PSH
sample 3: 23.8%/50.6%/25.6% PSD/PVME/PSH .
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Fig. 12. Flory-Huggins y/v, parameters for deuterated polystyrene/poly(vinyl methyl ether) and
protonated polystyrene/poly(vinyl methyl ether) interactions. The first one was obtained from
binary (PSD/PVME) mixtures (50%/50% weight fraction) and the second one from ternary
(PSD/PVME/PSH) blend mixtures (23.8%/25.6%/50.6%)
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The high concentration method is used, here, to extract single-chain, interchain
and total scattering structure facrtors. The scattering cross section for each
sample is given by:

dZ(Q)/dQ = (ac/ve — 3A/VP)2 [(‘)Ad)C/d)l%]N(bPVPPS(Q)
+ [(aa/Ve — ap/vp)da/Pp
+ (ac/Vp — ap/Vg) dc/dp 1> Npvp P1(Q) , (8.6)

where Ny = Ne = N, vy = ve = vp, §p + d¢ = ¢p. Ps(Q), Pr(Q) and the inter-
chain structure factor (Py(Q) = [P+(Q) — Ps(Q)]/dpr) can be extracted by
combining data taken for pairs of samples (sample pairs 1-2, 2-3 and 1-3) with
the proper weighing factors. The results are shown in Fig. 13. A number of
observations can be made. For instance, the various structure factors extracted
from different pairs of samples are slightly different due to the fact that the high
concentration method assumptions hold only approximately (conformations
may change from sample to sample, PL,(Q), PL,c(Q) and PL-(Q) may not be
identical, the system may not be completely incompressible, etc.). Moreover, the
interchain structure factors P,(Q) are negative as they should. Recall that, for
example,

Phc(Q) = — [V/Nve][d’R[1 — gac(R)]exp[ —iQ"R] (8.7)

where gac(R) is the pair distribution function representing monomer packing
and R is the inter-monomers distance. P4(Q) is obviously a very complicated
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Fig. 13. Single-chain P4(Q), interchain P,(Q) and total P(Q) structure factors for a blend mixture
of deuterated and protonated polystyrene (PSD, PSH) in poly(vinyl methy ether) (PVME). The total
PVME fraction was 51% and the PSD fractions were varied from 49% to 24%. The three curves
correspond to sample pairs 1-2, 2-3 and 1-3 in each case
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quantity to model directly in blend systems. It contains information about the
various monomer—-monomer interaction potentials, about monomer packing,
and about overall chain conformations. For instance, P¢(Q) depends not
only on AC interactions (represented by the yac “chi” parameter) but also
on the other ones (xap, Xnc). In order to investigate slight changes in the “chi”
parameter due to deuteration, the RPA is used, instead, to analyze the SANS
data from one of the ternary blends in the next section.

8.4 Ternary Blend of Deuterated Polystyrene/
Poly (vinyl methyl ether)/Protonated Polystyrene;
The RPA Method

Consider one of the ternary blend mixtures described in the previous section.
Data from sample 3 were taken from room temperature to 160°C and are
analyzed [43], using the RPA formalism for a ternary blend. The three compon-
ents are called: A: PSD, B: PVME, C: PSH. Also, temperature dependencies for
the two known chi parameters ()psp;pvme/Vo and Ypsppsu/Vo) Were assumed
[31, 32}

Yesppvme/ Vo = 973 x 107* — 0.416/T

(8.8)
XPSD/PSH/VO = —29x107°% 4 00020/T .

Results of the fits showed that ypgypvme/Vo has the following temperature
dependence:

XPSH/PVME/VO = 106 X 10_4 — 0436/T . (89)

This dependence suggests a spinodal temperature for the PSH/PVME system of
140 °C which is in agreement with cloud point measurements. Figure 12 shows
that the temperature dependence of Ypsppyvme and Ypsupyme are parailel
indicating that deuteration brings about a uniform shift in the spinodal
temperature. This result, however, may not hold for other compositions.

9 Discussion

Monodisperse polymer blocks have been assumed all along. Polydispersity
effects could be introduced in an ad-hoc fashion by assuming a molecular weight
distribution (such as the Zimm-Schultz):

W(n) = [a/<npT(a + 1)](a/<{n)) exp( — an/<n}) (©.1)

where {(n) is the number average degree of polymerization, a is a measure of the
polydispersity, and I'(a + 1) is the gamma function. The weight average degree
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of polymerization is
n, = <n*)/<{n) = {(n)(@ + l)/a 9.2)

so that the degree of polydispersity is € = (n,, — {n>)/{n) = 1/a. Averaging
over this distribution has the following effect:

(exp(—an)) = (1 + alnde)~ 1%, 9.3)
and the Debye function becomes:
(P(on))> = 2[(1 + adnde) Ve — 1 + alnde]/(1 + g)a?{nd?. (9.4)

Note that the same symbol { - - - > was used before to denote a conformational
average while here it denotes a molecular weight average. Averaging over
molecular weight distributions cannot always be done exactly. In cases where
the degree of polymerization (n) appears in complicated expressions,
“preaveraging” approximations ({f(n)g(n)> ~ {f(n)><g(n)>) have to be re-
sorted to. Random copolymers, for instance, could be modeled as regularly
alternating copolymers with polydisperse blocks [22].

With the advent of “formula manipulation” computer programs that per-
form analytical manipulations (Mathematica [45] was extensively used by this
author), lengthy results for the various structure factors for multicomponent
polymer mixtures are readily obtained and can form the basis of FORTRAN
codes that can be used to fit neutron scattering data. This approach is preferable
to performing the matrix inversions numerically because it involves an initial
careful setting up of the general RPA formulas only. Also analytical functional
forms are preferable to direct numerical calculations (matrix inversions, etc.) in
least-squares fitting where these functions are evaluated thousands of times.
This approach which consists in handling very complicated analytical forms to
fit the data could be referred to as “semi-analytical”.

The RPA theory works surprisingly well for homogeneous flexible polymer
systems considering the crude approximations involved (mean field and linear
response). It works better for concentrated solutions, melts and blends. It is also
often used for dilute and semidilute solutions. It, however, breaks down in
non-homogeneous (such as phase decomposing) systems and close to the critical
point where equivalent tools are not yet available. Renormalization group
theory, on the other hand, works well in dilute and semidilute polymer solutions
because it can account for loop interactions within one chain and for higher level
interchain (multiple) contacts; but breaks down in melts and blends. Moreover,
scaling arguments are available for the estimation of exponents in polymer
solutions. Scaling theory can be tested using neutron scattering (log-log plots);
however, it cannot predict prefactors and cannot, therefore, be used to directly
fit scattering data. The RPA itself has its own drawbacks; it cannot, for example,
describe compact polymer systems (such as stars with a large number of arms or
starburst dendrimers) in the semidilute region where these show local “liquid-
like” ordering (appearance of an interparticle peak in the scattering function). It
can however, describe these systems in the concentrated region (where chains
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interpenetrate). The effect of Coulomb interactions (in polyelectrolytes for
example) or dipolar interactions (in ionomers for example) have not been
discussed here. These interactions (as well as hydrogen bonding) increase the
long range order therefore enhancing density fluctuations and making the mean
field assumption (inherent in the RPA) a weaker approximation.

The Flory—Huggins “chi” parameter was introduced as a universal para-
meter. [t has been found to depend on a number of experimental variables
(molecular weight, composition, microstructure, tacticity, intermonomer dis-
tance, etc.) so that it has become an empirical parameter used to disguise our
inadequacies in the knowledge of polymer systems. Modeling efforts leading to
a better microscopic understanding of the origin of monomer—-monomer and/or
monomer/solvent interactions are needed. Van der Waals interactions between
atoms (represented by electronic polarizabilities) could form the basis of such
efforts. Other outstanding topics that require modeling efforts include: structure
factor for polymer networks, effects of shear on the scattering function (the RPA
may not be appropriate to use in the presence of shear), simple non-mean field
treatments of polymer solutions that could be used to fit scattering data,
prediction of phase diagrams for stiff copolymer mixtures, etc.

When the SANS technique was introduced, twenty years ago, data analysis
consisted mainly of observations of relative trends of parameters (such as the
radius of gyration) obtained by performing standard plots (such as the Guinier
plot) and the SANS technique was not “exciting”. However, modeling tools such
as the ones described here have made SANS a very precise technique that is rich
in information making it an increasingly used method (despite the fact that
SANS spectra look “dull” compared to other spectra) with applications ranging
from cutting edge science all the way to applied routine characterization. Newly
introduced methods (such as the High Concentration Method or the Random
Phase Approximation) have brought renewed interest in this technique. A recent
literature search by this author of the Chemical Abstracts database based on the
two keywords “neutron” and “polymer” came up with 480 articles that were
published between 1980 and 1990, 424 of which used the SANS technique. New
experimental methods both in the synthesis of ingenius polymer structures as
well as in making judicious sample environments (such as the shear cell) are
opening up new horizons to the SANS technique. Shearing, for instance, is
making this “equilibrium” tool valuable for the investigation of rheology prob-
lems as well. Kinetic measurements (time slicing of the data) is allowing dynamic
studies of chain conformations and concentration fluctuations to be made.
Phase separation of blends occurs so rapidly that the peak in the scattering
function (characterizing the later stages of spinodal decomposition) forms and
disappears into the very low-Q region rapidly. A few systems (such as poly-
carbonate/polymethyl metacrylate) are characterized by slow phase separation
kinetics which coupled with the availability of low-Q instruments and of time
slicing will permit the investigation of the intermediate stages of spinodal
decomposition. Theoretical back up is available both in early and late stages
and predictions are being tested using light scattering.
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It is unfortunate that research in the area of polymer solutions has been
deserted during the past ten years in favor of blend work. With the advent of
shear cells, it is expected that research in polymer solutions will become
“fashionable” again. For instance, the phenomenon of shear-induced apparent
demixing of high molecular weight polystyrene in semidilute solutions (in DOP
for example) is not understood. Kinetics measurements will hopefully permit
a close monitoring of the remixing effect after shear cessation as well.

The RPA formalism has been generalized to describe mixtures of stiff and
flexible polymers. Eventhough this generalization reproduces the main expected
features (isotropic-to-nematic transition for example), it cannot reproduce ex-
perimental phase diagrams observed in lyotropic liquid crystals for instance,
whereby a narrow two-phase region (channel) is observed between the isotropic
and nematic phases. The approach described here is a mere generalization of the
Doi et al. approach [36-38] to describe thermotropic polymer liquid crystal
mixtures. Most SANS measurements on liquid crystalline polymers have fo-
cussed on the investigation of chain conformations in oriented systems. There is
a need for data in the isotropic region which cannot be reached in most systems.
However, with slightly hydrogen bonded blends of flexible and rigid polymers,
there is hope for extracting both the Flory-Huggins and the Maier—Saupe
interaction parameters and investigating their dependences on temperature,
molecular weight, and composition.

10 Appendices

Appendix A: Multicomponent Random Phase Approximation
for Homopolymer and Copolymer Mixtures

Consider a polymer system consisting of n components. These could be
homopolymer mixtures or homopolymer and copolymer mixtures. In order to
simplify the calculations, we consider that at least one of the components (that
we call “matrix” component) is a homopolymer. The formalism presented here is
a straightforward extension of the two-component case in an n-vector and n x n
matrix notation [13]:

PpQ)) = —Xo(Q)[U/kgT + (W/kgT) - {p(Q)) + AE] (A.la)
PQ) = —X(QU/kgT (A.1b)
ET-(p(Q))=0 (A.1c)

where {p(Q)> and U are the vector density and externally applied potentials,
X, (Q) and X(Q) are the bare and interacting system structure factor matrices,
W is the monomer-monomer interaction potentials matrix, E is a vector with all
components equal to unity and A is a Lagrange multiplier introduced to help
impose the incompressibility constraint (incompressibility equation: ET- {p(Q))
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= 0). The idea is to isolate the “matrix” component (denoted component M)
from the “rest” of the blend (denoted R). Matrix X(Q) is formed of a scalar part
X%m(Q), a vector part Xz (Q) and a matrix part X§g(Q) and similarly for W.
Assuming that no copolymer is shared between the “matrix” component and the
remaining (n — 1) components imposes Xgur (Q) = 0 therefore simplifying the
calculations. With the M-R separation, the RPA equations become:

pmy = — XI(\)/IMUM/kBT - X(I\)IIRUR/kBT — (Xo*Wium<pm>/keT
— (Xo* Whr <pr>/ks T — A(Xwm + Xir " Eg) , (A.2a)
pry = — XgMUM/kBT - XgRUR/kBT — (Xo Wirm{pm>/ksT

— (Xo* W)k <{pr>/ksT — A(XRm + XRr " Eg) , (A.2b)
{pu> = — XumUn/kpT — Xyr Ur/kp T (A.20)
pry = — XemUm/kpT — Xpr Ur/kT (A.2d)
(pmy + Eg-{pr> =0 (A.2e¢)

where Eg is an (n — 1)-vector with all terms equal to unity and E} denotes its
transpose. Extracting A from Eq. (A.2a) and replacing it in Eq. (A.2b) yields an
equation for {pg >, which with the help of Eq. (A.2e) becomes:

(pr> = — XRr{Ur/kgT + ( — Wy Eg + Wiz ) (pr>/k T
— Er(Xim) ™' [— ER + Xom(— WumER + Wir)/kg T1<{pr > }
+ (XRr " Eg ) Un/ks T (A.3a)
pr> = — XgmUm/kgT — Xpr Ur/kgT . (A.3b)
Defining an excluded volumes matrix:

V= — WpyER/kpT + Wgrp/ks T + ExEx/Xm

+ EREfWunn/ks T — Ex Win/kg T (A4)
the RPA equations become (I is the identity matrix):
Xer(Q) = X&r(Q)* [T + V(Q).Xie (Q)]™" (A.3)
or if one drops the RR indices (in another form):
X1HQ =X 1{(Q) + V(Q). (A.6)

Note that without the incompressibility assumption (and without using the
Lagrange multiplier A), one would arrive to an identical equation for nxn
matrices but with W replacing V(Q). Note also that V(Q) has the dimension of
inverse volume.

This generalization of de Gennes’ formula to multicomponent homopolymer
and copolymer blends can describe a wide variety of situations. After a slight
generalization (described in Appendix B) it can also, describe the case of pure
copolymer mixtures whereby a copolymer has to be shared between M and R.
Using Appendix A, one could obtain this limit (pure copolymer mixtures) by
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assuming a fictitious homopolymer (say component Z) in the mixture to be the
matrix component, then taking the limit ¢, — 0. This method is cumbersome
because of the fact that the Z component appears in the denominator of the
various terms of V(Q) which diverge if proper care is not taken. Moreover, this
procedure involves inverting (n + 1)x(n + 1) matrices for an n-component
problem. The general situation [ 15] where a copolymer is shared between R and
M is discussed in Appendix B.

Appendix B: Multicomponent Random Phase Approximation
for Pure Copolymer Mixtures

In the case where X{r(Q) + 0; i.e., if a copolymer is shared between R and M,
we follow Akcasu [15] and introduce an n x (n — 1) matrix P = Col[I, — E}]
where I is the (n — 1) x(n — 1) identity matrix and Ef is an (n — 1) row vector
comprising only ones. Using the P matrix, the incompressibility statement
becomes: {p> = P<{pg> and Eq. (A.1b) becomes: X' {pr> = — PTU/ksT.
Multiplying:

Xo ' {1+ X0 Wo/kpT}*(p> = — [U/ksT + AE] (B.1)

on the left by PT and using the fact that P"-E = 0, one can eliminate the
potentials U and obtain:

XIZRI =PT'X61{I+Xo'W0/kBT}'P. (B2)

This is a general result that states that the incompressibility constraint can be
applied by sandwiching the n xn matrix X !(Q) (obtained for compressible
mixtures) between PT and P in order to obtain the (n — 1) x (n — 1) matrix of
structure factors Xgg (Q) for the remaining components. For example in a
binary blend mixture of flexible polymers, the sandwiching procedure has the
effect of adding the diagonal elements and subtracting the off-diagonal elements;
ie, PTWoP = (W3, + Wis — W35 — Wa)/kgT = — 2y which defines the
Flory—-Huggins interaction parameter y,p in terms of the interaction potentials
W,’s. Of course, the approaches of Appendices A and B agree in common cases
(for example in the case of a copolymer A-B and homopolymer C mixture).

Appendix C: Compressible Binary Blend Mixture of Stiff Polymers

We consider a polymer system consisting of n kinds of stiff polymers, and use the
matrix notation approach introduced by Akcasu [13-15]. Some of these
components could be copolymers. Component I has a degree of polymerizations
N;, volume fraction ¢, monomer volume v;, and segment size b,. For stiff
polymers, the averaged fluctuating density is defined as:

PQ.u)) =) exp(—iQ ry)d(u — uyi)) (C.1)



SANS from Homogeneous Polymer Mixtures 129

where monomer i in polymer o is located at position r,; and is oriented along
direction u,; and where { - -- ) represents an average over conformations
(i.e., over distributions of ry; and uy;).

Following the standard RPA formalism, we define externally applied
(weakly perturbing) potentials U (U is an n-component vector that can depend
on QQ but not on monomer orientations) and inter-segment potentials W (u, u')
{n x n matrix) where u and u' represent the directions of two test segments.
Within the mean field approach, the RPA equations give the mean response of
the averaged densities {p(Q, u})> ({p ) is an n-vector) in terms of the response
functions for the bare system X,(Q, u, u’) (n x n matrix) and for the interacting
system X(Q, u, u’). In this matrix notation approach, bold face characters are
used to represent n-vectors, n x n matrices as well as three-dimensional cartesian
vectors such as direction u. The RPA equations in the matrix form are:

(P(Qu)) = — [du'X,(Q, u,v)
[U/kgT + [du” W (', u”){p(Q,u"))»/kgT] (C.2a)
along with;

PQ )= — fdwX(Q uu)U/k,T. (C.2b)

Note that these two sets of equations can be combined to give:

X(Q, u,v') = Xo(Q, u,v) — fdu,du; Xo(Q, u, u,)
X W(ug,u;)X(Q, u;,u")/kg T (C3)

which are the general RPA integral equations for compressible blend mixtures.
Note that these equations are similar to the Ornstein—Zernicke relations [35].
Since the inter-segment interactions become weaker when two test segments are
parallel to each other, the interaction potentials are taken to be proportional to
sin(a) where o is the angle between the two test segments (sin (o) = |u'xu” | where
x is the vectorial product). In order to proceed further, Doi et. al. [36-38]
assumed the following expansion:

sin(a) = (n/4) {1 — (15/16)(ww’ — I/3):('w’ —1/3) + - -} (C.4)

where u'u’ represents a second rank tensor, I is the second rank unity tensor and
the column (:) represents the scalar product of two second rank tensors.
Neglecting higher order terms effectively decouples the u’ and u” integrations in
the RPA equations therefore making calculations tractable analytically. The
interaction potentials can, therefore, be assumed to be:

W, uy) =Wy — Wi (uyu;, —1/3):(uyu, — 1/3), (C5)

W, and W, (n x n matrices) are assumed, here, to contain unknown potential
parameters (Note that Doi et al. [36-38] relate their scalar counterparts
through: W /W, = 15/16 for rigid rods). The W, potential factors are the
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Maier-Saupe interaction parameters. The u, and u, integrations become:

[ duy §du, Xo(Q, u, u )W(uy, u,)X(Q, uy, u”
= {{du; Xo(Q, u, u; )} Wo { [du, X(Q, uy, u")}
— {[du; Xo(Q, u, u; ) (u,u; —1/3)}:
W, :(deZX(Q, uy, u”)(uu, — 1/3)} . (C.6)
We use the following identity:
Jdu'Xo(Q, u, w)[u'v' — 1/3] = (3/2)[qq — /3]

x {du' X, (Q, u, u')[(q-u')* — 1/3]
(C.7)

(where the unit vector ¢ = Q/|Q| has been used to represent the longitudinal
direction) and define the following orientational moments (n x n matrices):

Xo(Q) = {du{du'X,(Q, u, u')
X(Q) = [du[duw'X(Q,u,u)
Ro(Q) = (3/2) du f du'Xo(Q, u, w') [(q-u)* — 1/3]
R(Q) = (3/2) du [ du' X(Q, u, w') [(q*w)* — 1/3]
To(Q) = (9/4) [ du [ du'X,(Q, u, u')
x[(q-w? —1/3]1[(q-v')* - 1/3]. (C.8)
Note that the matrices R and R, are not symmetric in the case of copolymers

where one of the blocks is flexible and the other one is rigid.
We integrate Eq. (C.3) over u and u’ to obtain:

X(Q) = Xo(Q) — Xo(Q) Wy X(Q)/kgT + (2/3)R5(Q)* W, - R(Q)/kg T
(C.9)

where RI(Q) is the transpose matrix and we have used [qg — 1/3]:[qq — I/3]
= 2/3. First, multiplying Eq. (C.3) by [(q-u)? — 1/3] and then integrating over
u and u’ gives another set of equations:

R(Q) = Ro(Q)* Wo - X(Q)/kpT 4 (2/3)To(Q)* W1 *R(Q)/ky T (C.10)

These sets of coupled Eqgs. (C.9, C.10) can be solved by eliminating R(Q) in order
to obtain after a few manipulations:

X={I+Xo Wy + Q23R -W,-M Ryp-W,} 7!
x{Xo + (2/3R5-W M '“Rg} (C11n

where the (Q) argument and the temperature (kgT) have been dropped for
notation convenience and M = [T — (2/3)T,* W, /kz T] has been defined. Note
that the isotropic case (i.e,, if orientational correlations were neglected) is
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obtained when W, = 0 as:
X(Q)7 =Xo(Q) ! + Wo/ksT (C.12)

which is the result for multicomponent compressible blends of flexible polymers.

Appendix D: Incompressible Multicomponent Mixture
of Stiff Polymers

Using the matrix notation approach [13-15] that was introduced to describe
multicomponent (here also consider n components) flexible polymer systems,
the RPA equations are reviewed here for an incompressible stiff polymer
mixture. As before, the idea is to isolate a “matrix” component (denoted
component M) from the “rest” of the blend (denoted R). The various correla-
tions are described through a scalar part X%u(Q), a vector part Xgz(Q) and
a matrix part X2g(Q), and similarly for potentials W’s. The RPA equations for
the n-vector fluctuating densities {p(u)) are:

(P> = — [duXo(, w)[U/kyT + AE
+ jdu”W(u’, u’)<{pu)>/kyT] (D.1a)
p(w)) = — [du'X(u, w)U/kgT (D.1b)

where {p(u) ) = Col[{pgr(u)>, {pm(u)>], Eis an n-vector with all terms equal to
unity and the Q dependence has been omitted for simplicity in notation. A is
a Lagrange multiplier that is to be determined using the incompressibility
constraint:

(pm> + ER-{pr>=0. (D.1¢)

where (pu) = [du{pu(u)) and <pr) = [dudpg(u)).
Following the same procedure as in the previous appendix, we obtain sets of
equations for the orientational moments which are solved to give:

{Xo + 2/3RE-W,-M Ry} {1 + X W,

+(2/3RGW "M~ R W }<{p> = — [U + AE] (D.2)
(kg T has been omitted) along with:
X" py=~-U (D.3)

Here also, we use the nx(n — 1) matrix P to apply the incompressibility
constraint and obtain:

Xad = PT+{Xo + (2/3)R5-W,-M ™' -R,} !
X {I+Xo"Wo(2/3)RE-W, M~ *Ry* W, } - P (D.4)

This result generalizes the one obtained in Appendix B to include chain
stiffness.
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